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Abstract 

In this project, we performed experiments and simulations to establish constitutive 
models for plastic behavior and to determine the deformation mechanism of 
nanocrystalline materials at different grain sizes (<100 nm) and high strain rates 
(>10^6/s). The experiments used both laser-induced shocks and isentropic compression to 
investigate, for the first time, the high-strain-rate deformation of nanocrystalline Ni. 
Samples were characterized using transmission electron microscopy, nanoindentation, 
profilometry, and x-ray diffraction before and after loading. We validated constitutive 
models using both atomistic molecular dynamics and continuum simulations performed 
at the boundary of their current computational possibilities to match experimental scales. 

 

Introduction  

Improved understanding of the deformation mechanisms of nanocrystalline metals could 
lead to the design of new materials with higher or lower resistance to plastic deformation. 
Nanocrystals are useful materials for laser targets and other applications due to their high 
hardness. Our simulations and experiments suggest a novel way to obtain even harder 
nanocrystals, both during and after shock loading. The results to date are unique because 
these strain rates had never before been attained in nanocrystals and because experiments 
and atomistic simulations cover the same length and time scales. Our use of local 
facilities (Janus laser, electron microscopy, characterization facilities, and massively 
parallel computers) increased in-house expertise. 

 

Research Activities 

We accomplished all planned milestones: a) loading, TEM and hardness measurements of 
about 20 samples; b) positron measurements of porosity; c) atomistic simulations of grain 
boundary sliding under pressure and of shocks in samples with grain sizes up to 50 nm; 
d) a new model of deformation was implemented into a continuum (micromechanics) 
code.  

The results of the LDRD were reported in six high-profile publications, covering 
different aspects of our nanocrystal research.  



The first publication of our LDRD [1] was an invited paper in a special issue on 
nanoscale materials in the Journal of Metals. We found scaling laws for the width of a 
shock wave propagating in a polycrystal. The irregularities in a shock front, that 
determine its width, can act as seeds for hydrodynamic instabilities and have to be 
avoided for a successful NIF capsule implosion.  

Our highest impact paper [2], published in the journal Science, proposed a novel method 
to create ultra-hard nanocrystals, focusing on atomistic simulations results, and including 
preliminary experimental data to support this method. The details of the experiment for 
nanocrystalline Ni were later published in Applied Physics Letters [3]. We presented 
experimental results showing twinning in NiW nanocrystals in ref. [4]. 

In order to understand the detailed atomistic mechanism in this “ultra-hardening” of 
nanocrystals, we carried out controlled loading simulations that gave us a quantitative 
law to explain pressure-induced suppression of grain boundary sliding. This result was 
also published in Applied Physics Letters [5]. Such law was then applied inside a 
continuum-level code to calculate the mechanical behavior of nanocrystals under pressure 
[6]. This work, carried out in collaboration with a Los Alamos National Laboratory 
researcher, offers a pathway to build better constitutive models for polycrystals in general. 

In addition to our publications, we had several conference presentations, including three 
at international conferences, as listed below [7-10]. 

 

Summary 

During FY04-06 we obtained high-visibility publications (including one paper in Science, 
two in Applied Physics Letters, and one in Acta Materialia), a number of invited 
presentations, and press coverage of our results around the world. The deformation map 
that we obtained, together with our new continuum level model of grain boundary sliding 
fit to atomistic data, can be used to improve current continuum simulations and to plan 
future experiments involving polycrystals. 

Our work (1) validated constitutive models (e.g., grain size and grain boundary 
corrections) important to the Stockpile Stewardship Program (SSP); (2) enhanced our 
understanding of nanocrystalline metals important to SSP; (3) mapped deformation 
processes at high strain rates; and (4) developed massively parallel simulation capabilities 
to study these processes. In addition, this project contributed to the Laboratory's mission 
in basic science. 
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